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There are two fundamental inner triplet design approaches 
(both need large-aperture quadrupoles):
a) Single-bore magnets. Quadrupoles with the largest possible 
aperture are required, to provide the largest beam separation 
and accommodate the large β-max.
b) Double-bore magnets for the dipole-first design. There are 
two contradictory requirements for IR quads:

- Large β-max requires largest possible aperture;
- Twin-bore configuration limits the coil size and aperture. 

At present time the IRQ R&D program is focused on the large-
aperture Nb3Sn quadrupoles for the single-bore inner triplet 
and double-bore inner triplet with parallel axes.

Introduction
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We studied Nb3Sn quadrupoles with 90-110 mm apertures to 
address the following questions:

• What are the aperture limitations for the single and double 
bore configurations?

• What are the limiting factors?

• What field quality can be achieved?

• What are the possible coil/yoke designs?

• What are the operation margins?

• What are the conductor requirements?

R&D questions
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90-mm 100-mm 110-mm

2 or 4 layer coils provide 
necessary gradient and 
field quality
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Shell type quadrupole 
coils

bn @ 17 mm bn @ Rbore/2 bn @ 17 
mm n 

110 mm 100 mm 90 mm 110 mm 100 mm 90 mm 70 mm* 
  6 0.00003 0.00011 0.00018 0.00022 0.00053 0.00056 -0.013 
10 0.00007 0.00013 0.00048 0.00333 0.00286 0.00451 -0.001 
14 0.00004 0.00004 0.00024 0.01179 0.00456 0.00691 -0.0011 

 



Vadim Kashikhin 5LAPAC Review
June 2004, Fermilab

The cold-mass can fit into the existing 
LHC cryostat.

Rref = Rbore/2

0.175488 2.194485 4.213482
Component: BMOD
0.1755 2.1945 4.2135
Component: |B|, T

90-mm magnet yoke 
with cooling holes
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Large cooling holes to remove heat 
depositions.
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Coil magnetization effect
and its correction
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300-µm iron strip improves the 
field quality by a factor of 4.

Rref = Rbore/2
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Thermal analysis

The Nb3Sn magnet designed 
with 20 % quench margin 
can withstand 40 mW/cm3

of peak power dissipation in 
the midplane turns at 
Top=1.95K.
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The inductance and stored energy the 110-90 mm quads and calculated Ths

and Tblk are reported below for Fqh of 50% and 25%. 

The acceptable Tmax for accelerator magnets is 300-400 K and Fqh<50%. 

Even for Fqh=25% Tmax is within 315-335 K. With Fqh=50% Tmax does not 
exceed 250 K.

Aperture Parameter 110 mm 100 mm 90 mm
L, mH/m 17.46 14.71 4.86

W(205 T/m), kJ/m 1181 703 468
Fqh=50% 230 225 230Ths, K Fqh=25% 335 320 315
Fqh=50% 150 140 127Tblk, K Fqh=25% 220 200 180

Quench protection
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100-110-mm aperture seems to be 
the upper limit for the nominal 
gradient of 205 T/m and conductor 
Jc(12T,4.2K) = 3 kA/mm2.
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Aperture size 
Parameter Unit 110 

mm 
100 
mm 

90 
mm 

N of layers  4 4 2 
N of turns  248 228 144 
Coil area (Cu + nonCu) cm2 84.88 59.31 48.09 
NonCu Jc at 12 T, 4.5 K A/mm2 3000 3000 3000 
Quench gradient T/m 248.9 258.2 260.6 
Quench current kA 14.13 12.31 17.64 
Peak field in the coil at quench T 15.28 14.51 13.50 
Inductance mH/m 17.46 14.71 4.86 
Stored energy at 205 T/m kJ/m 1181.4 702.9 468.2 

Fx MN/m 3.44 2.38 1.50 Lorentz forces in the first 
octant at Gnom=205 T/m Fy MN/m -3.42 -2.39 -1.92 
Maximum coil stress MPa 99 90 73 
 

Magnet parameters

Coil area and forces grow as 
aperture square.
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90-mm magnet mechanical 
structures

Bladder and key designCollared design

Two types of mechanical structures and coil designs are under 
investigation. The 90-mm magnet can use 2 or 4-layer coils 
supported by free-standing collars within the “perforated” yoke 
or by Al shell in the bladder and key design.
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Shell type Nb3Sn magnets with 90-110 mm apertures based on 
advanced superconductors satisfy gradient and field quality 
requirements and have sufficient thermal margins.

The 100-110-mm aperture is the upper limit for a magnet with 
the nominal gradient of 205 T/m.

While the 90-mm design can employ 2 or 4 layer coils, the 100 
mm and 110 mm designs require 4 layer coils to limit the 
maximum current by 14 kA and simplify coil windings.

Different coil cross-sections and yoke structures are to be 
investigated during the model magnet R&D.

Summary
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The racetrack quadrupole magnets were optimized with the following basic 
constrains, used also during the shell type magnet optimization:

Jnon-Cu(12T,4.2K) = 3000 A/mm2;

Cu/nonCu = 1.3;
Round iron yoke, µ = 1000;
Coil-yoke space in the midplane = 15 mm;
One spacer/octant for the field quality correction.

Study of racetrack 
type magnets

Aperture and gradient limits in the racetrack configuration?

Field quality?

Efficiency with respect to the shell type designs?
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Equivalence criterion – the 
same space for beams as in 
110-mm shell type magnet.

Constrains:
the same thickness of beam 
tubes;
the same areas of the cooling 
channels.

110-mm shell 92-mm 
racetrack (in the pole plane).

Equivalent aperture of 
racetrack quadrupole
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The 90-100 mm racetrack magnets can employ 
interleaving coil design to maximize efficiency. 
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The limiting harmonic is b14: a factor of 5 larger in the 
racetrack than in shell type magnets.

Racetrack Shell Harmonic 90 mm 92 mm 100 mm 90 mm 100 mm 110 mm 
b6 -0.0008 0.0004 -0.0001 0.0006 0.0005 0.0002 
b10 -0.0797 0.1484 0.0055 0.0045 0.0029 0.0033 
b14 -0.0529 -0.0490 -0.0447 0.0069 0.0046 0.0118 
b18 0.0025 0.0016 0.0017 -0.0047 -0.0036 -0.0032 
a4 0.0035 -0.0041 0.0039 - - - 
a8 0.0051 0.0245 0.0508 - - - 
a12 0.0040 0.0015 0.0027 - - - 
a16 0.0000 0.0000 0.0000 - - - 

Field quality I

Rref = Rbore/2
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Good field region in 92-mm racetrack 
and 110-mm shell type magnets

The plot shows contours of 
10-4 field uniformity (good 
field region).

The good field region is 70% 
of the beam envelope in the 
racetrack magnet, and 90% 
in the shell type magnet. 

Field quality II
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92-mm racetrack                   110-mm shell
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Peak field
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Racetrack Shell Parameter Unit 90mm 92mm 100mm 90mm 100mm 110mm
N of layers  4 4 4 2 4 4 
N of turns  332 368 388 144 228 248 
Coil area (Cu + nonCu) cm2 96.53 133.08 169.22 48.09 59.31 84.88 
NonCu Jc at 12 T, 4.5 K A/mm2 3000 3000 3000 3000 3000 3000 
Quench gradient T/m 240.8 240.4 226.4 260.6 258.2 248.9 
Quench current kA 11.87 13.70 14.52 17.64 12.31 14.13 
Peak field in the coil T 14.9 15.3 15.7 13.5 14.5 15.3 
Inductance mH/m 30.86 33.44 39.94 4.86 14.71 17.46 
Stored energy @ 205 T/m kJ/m 1575.6 2282.0 3452.0 468.2 702.9 1181.4 

Fx MN/m 3.67 4.42 6.10 1.50 2.38 3.44 Forces/octant at 
205 T/m Fy MN/m -3.78 -4.83 -6.37 -1.92 -2.39 -3.42 

 

92-mm racetrack quadrupole has lower efficiency than 110-mm shell type 
magnet: coil area is larger by 57%, stored energy – by 93% and forces –

by 41%. It may require an inner support tube.

Magnet parameters
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Open midplane design

0 20 40 60 80 100 120

There was an attempt to 
optimize racetrack coil with 
midplane spacer in order to 
reduce the heat depositions in 
the coil.

A satisfactory field quality can 
be achieved, however the 
maximum gradient is only 215-
225 T/m that does not provide 
sufficient quench margin.

90-mm coil
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• The equivalent of 110-mm round aperture is 92 mm 
in the pole plane of square racetrack aperture. 

• Racetrack quadrupole with 92-mm aperture is less 
effective than the shell type design with 110-mm 
aperture by all the major parameters. 

• Due to the coil size limitations, the racetrack design is 
not appropriate for the 2-in-1 configuration.

Summary
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The required relatively small beam separation 
distance leads to:

Large coupling between coils
Large yoke saturation effect.

Solution ⇒ warm iron yoke and asymmetric 
coils.

Aperture was fixed at 100 mm, beam 
separation - at 194 mm.

Study of double aperture
magnets
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0 20 40 60 80 100 120 140 160 180 200

Two types of quadrant coils address
the field coupling issue.

100-mm asymmetric coil design

Gmax= 247.6 T/m, Imax= 15.34 kA for Jc(12T,4.2K) = 3000 A/mm2
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MAIN FIELD:     6.45440 NORMAL REL. MULTIPOLES (1.D-4):
b 1:      0.00528  b 2:  10000.00000  b 3:     -0.01577
b 4:     -0.00610  b 5:      0.00261  b 6:      0.00324
b 7:      0.03312  b 8:     -0.00252  b 9:     -0.17381
b10:      0.13609  b11:      0.08060  b12:     -0.05976
b13:      0.02184  b14:     -0.02200  b15:      0.01077
b16:     -0.00120  b17:     -0.00406  b18:     -0.00261

Geometrical field quality is comparable with 
that in the existing MQXB magnets

Field quality

Rref = Rbore/2
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Yoke IR = 400 mm.

Yoke OR = 470 mm.

Yoke dimensions are to 
be optimized (reduced).

The coil support 
structure should be 
studied.
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There is virtually no effect of 
the yoke saturation up to 250 T/m

Yoke saturation effect



Vadim Kashikhin 26LAPAC Review
June 2004, Fermilab

Summary

• The 2-in-1 quadrupole can accommodate a maximum 
bore size of ~100 mm for the beam separation distance 
of 194 mm.

• Asymmetric coils and a warm iron yoke allow to 
control geometrical field quality and the yoke 
saturation effect.

• Analysis of field and force sensitivity to tolerances of 
coil positioning inside the warm yoke will be 
performed later.

• The possible mechanical structures can involve collar 
and/or key and bladder designs that is subject to  
study and optimization.
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• Large aperture IR quadrupoles based on Nb3Sn 
satisfy major requirements necessary for the LHC 
luminosity upgrade, including: field gradient and field 
quality, operating margins and quench protection.

• Shell type-coil is the most effective approach that 
allow 100 mm aperture in both single-bore and double 
bore IRQs.

• The most important limiting factors are the critical 
current of Nb3Sn strands and magnet mechanics.

• Final quadrupole parameters will be determined 
based on the results of model magnet R&D.

Conclusion


